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A problem closely approximating the actual physical conditions of
the silicon zone refining process is formulated mathematically.
Certain calculation results are presented. These are compared with
experimental data on the principal characteristics of the process.

In zone refining, the temperature distribution in
the rod countrols the most important characteristics
of the refining process itself and predetermines the
properties of the single crystal produced. The dis-
tribution of electrical properties over the crystal
cross section depends on the configurationof the crys-
tallization front. The temperature gradients in the
rod near the crystallization front are associated with
the conditions of dislocation growth. Moreover, the
relative position and configuration of the crystalliza-
tion and fusion fronts determine the zone height nec-
essary to melt through the rod, etc.

This paper presents a method and certain results
of solving the three-dimensional problem of heat con-
duction with allowance for the heat of crystallization
using the closest possible approximation of the bound-
ary conditions to the actual characteristics of induction
zone refining. We chose silicon as our experimental
material because of its commercial importance.

The object of the calculations is to construct the
temperature field under various melting conditions
and determine the effect of the zone refining conditions
on the more important characteristics of the process.
Special attention is given to the determination of the
shape of the crystallization and fusion fronts and to the
determination of the temperature in the part of the

solid rod where the silicon is plastic (temperature
region above 900° C).

Under the initial conditions of the problem, the sil-
icon rod is assumed to be an infinitely long, straight,
circular cylinder of radius R moving at constant ve-

Fig. 2. Melting zones at various
heating powers, R=1.5cm, v =
= 0. Experimental data.

locity v. The integral radiation factor o, the specific
heat ¢, and the density p are assumed constant and
independent of the temperature and state of aggrega-
tion of the silicon. The thermal conductivities of the
solid Ag and liquid Ay phases are also assumed con-
stant.

In what follows:

1) The temperature distribution in the rod is de-
scribed by the heat-conduction equation, a certain
effective thermal conductivity A] being given in the
liquid phase. The choice of this coefficient makes it
possible to take into account to some extent convective
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Fig. 1. Steady-state fusion and crystallization isotherms

for R =1 cm, P =850 W at various velocities v. Theo-

retical data: 1) v = 0; k = 1; 2a) v = 5 mm/min; k = 1; 2b)
v = 5 mm/min; k = 100; 3) v = 10 mm/min; k = 1.



132

mixing in the liquid phase. Let T(¥, Z, T) be the tem-
perature of the rod at the point (¥, Z) at time T. Then
in the moving coordinate system (¥, z) tied to the
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Fig. 3. Effectof zonevelocity

v {mm /min) ondisplacement [

of the zone (mm) relative to

the inductor: 1) calculation

datefor ] /Ag = 1; 2) the same

for A1/Ag = 100; 3) experimen-
tal data.

moving rod the heat-conduction equation for a cylinder
of radius R is written as

0T 1 oT 0T aT
7\4 T — _ — — = ’—___.‘,
()( 6r2+r or 622) ce at
>0, 0<r<R —w <z<co,
x(T):{As’ T<Tf1 (1)
M, T>T;.

2) Assuming radiation according to the Stefan-
Boltzmann law and surface power sources created by
a stationary inductor, we write the conditions at the
surface of the rod as

—L(T)~:—r_T~=oT4——(D(§+u_) (2)

at ¥ = R.

3) In accordance with the theory and practice of
induction heating [1], the power sources & are as-
sumed to be distributed over the surface with density

p
D)= —— X
) 2n R
[arctg s+2,5a —arctg s—0.5a ]“
X — ' . (8)
o 2
g(arctg s+g.5a — arctg s 3‘5‘1 ) ds

4) The liberation and absorption of the heat of phase
transition at the solid-liquid phase interface are de-
scribed by the Stefan condition
vo 22 4 ((M)grad T T-; grade) =0, (@)

ot =Tg,
v is the specific latent heat of erystallization; ¢(F, Z, T)=
= 0 is the surface equation of the isotherm T =T;;
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[M(T)grad T)=1T—  denotes the jump in the quantity
£+

MT) grad T on crossing the surface T = Ty.
To Egs. (1)—(4) we must add the conditions

T(r, z, ) is bounded at 7= 0.
0 _0 as |7~ . (5)
dz

We introduce the fixed coordinate system (r, X) tied
to the stationary inductor:

r=r, X=2z+0l

In addition, we introduce the following dimension-
less quantities:

N R SR
- R ] - R y - R ’ _ CpRgv
uchR v, x=z4npk

g
" 1 CT=T b = I, u<O,
k) Tp =T, %, u>0.
i

We also assume that the rod is not infinitely long
but bounded by the coordinates x = —-B, x = B.

Then conditions (1)—(5) reduce to the following
dimensionless form

Pu 1 ou 0%u " du Ju
or? + r or + Ox? = \p 9x ’hg)’
t>0; 0<r<l;, —B<x<B, (6)
%=G®(RX)~ﬁ[k(u)u+6ll4 at r=1, (7)
O _ 0 at |x|=B, (8)
0x
u is bounded at r = 0.
Here
— 3
e R G eRCT-TP. T,
?“s (Tf ”"To) )“s Tf -— T0

Equation (6) has been written in a form suitable for
application of the "through calculation"” method de-
scribed in [2]. In this case on the right side of Eq. (6)
there appears the term

Oa(u) oa (u)
at tu dx
with the discontinuous coefficient a(u) resulting from
the Stefan condition (4). Smoothing of the coefficient
a(u) by the method proposed by Oleinik [3] leads to the
following value of the coefficient c(u):

1, u<L,

b 7y

LAY (1+ ) i< L,
As , u>L
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Here, b = ye™!(Tf — T,)"'and L is a small number
which may be arbitrarily selected. The choice of L
depends on the accuracy of approximation of the Stefan
condition at the phase interface.

Although we are interested only in the stationary
temperature distribution u{r, x), we will deliberately
retain the term with 8u/ot in Eq. (6).

Below we make use of the method of solving a sta-
tionary problem by solving the corresponding nonsta-
tionary problem, in this case (6)—(8), until a steady
state is reached. For this purpose we emplcy one of
the economical variable-direction finite-difference
schemes using one-dimensional pivots in each direc-
tion. We introduce the difference net with space nodes
at the points (xi, rj) and time nodes at the points tj,
where i = 0, 1, 2, s M;x; = -B, x(y=B;j=0,1,
2, ..., Ny =0, 1y = 1, k= 0,1, 2, ; b= 0.

We replace Eq. (6) by its finite-difference equiva-
lent, using a scheme similar to that proposed in [4]:
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Here, u%- = ulxi, rj, tg); clfj = c(u[i{j); hij = x§ —%j-4;
8 = Tj = Tj-1; Tk = tk — tk-1. K+ 12
We first calculate values of the function Ujj on
k +1

the half-step, and then values of the function U3
on the full step. In this case on the half-step the de-
rivatives with respect to x are implicitly, and the de-
rivatives with respect to r explicitly, approximated;
conversely, on the full step the derivatives with re-
spect to x are explicitly, and those with respect to r
implicitly, approximated.

This makes it possible to use one~dimensional
pivot formulas at each half-step and step [5]. Boundary
condition (7) at the surface r = 1 is approximated as
follows:
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—é‘; (@i — ) ) = o (Rx) —
Bl ) 4 SR, + 8F. (1)

On the axis of the rod r = 0 we impose the require-

ment lim 9 =0, so that
r-0 Or

I du  Pu

lim - %%

re6 r 9 ar

With this remark in mind, we approximate Eq. (6)
on the line r = 0 in the usual way. A total of 80 nodes
was taken over the entire interval of variation of x:
—B < x <B. The steps h; were varied over the total
number of nodes. This made it possible to select the
parameter B so that the restriction on the length of
the rod did not lead to a serious distortion of the iso-
therm profile in the region affected by the inductor.

In the final analysis the interval of variation of x from
—13. 5 to +13. 5 was divided by points as follows:

By =hy= ... =hy =10,
hy = hy = ... = hy = 0.5,
Iy =Ry = ... = by = 1/6,
By = lyy = ... = hyy = 1/12,
hsg = Ao == ... = hgg = 1/6,
Bgy = hgs = ... = Hyy = 0.5,
hyy=hp= ... =Hhypy=10

The step with respect to r was assumed constant,

g = 1/12. In approximating the Stefan condition (ex-
pression for the coefficient c(u)) we varied the para-
meter L. In the final analysis we took L = 0. 0125.

For anoptimum choice of time steps T themachine
time required to calculate one variant of the problem
was 80—90 min (BESM-2M computer).

In carrying out the computations it was assumed
that the steady state had been reached when the maxi-
mum difference in the values of u in two successive
time steps did not exceed 0. 00001. In order to find
the shape of the zero isotherm (fusion and crystalliza-
tion isotherms) we carried out linear interpolation
between two adjacent nodes of the net. This introduced
an additional error in determining the isotherms.

We present the results of the calculations for sev-
eral variants. The calculations were made for a sili-
con rod. The common values of the parameters were
as follows: @ = 0.4°10 m; d = 0.5-10"2 m; Ag =
= 30 W/m-deg; ¢ = 960 W-sec/kg-deg; p = 2300
kg/m3; v = 1.8 J/kg; 0, = 3.12°10"% J/m?. deg!- sec;
Tg = 1420° C; T, = 20°C.

Figure 1 shows the isotherms u = 0 found for the
variant R = 0. 01 m, P = 850 W at different velocities
v(v=0, 0.83 - 107, and 1.67 - 107 m/sec).

The figure shows the qualitative variation of the
fusion region and the zone height at the surface of the
rod as the velocity v changes. At v = 0.83¢107¢ m/sec
the isotherms are given for k= Aj/Ag = 1 and for k =
= 100. Variation of the thermal conductivity in the lig-
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uid phase is seen to have a strong influence on the po-
sition of the isotherm.

The calculated results were checked experimentally.
In a first series of experiments we investigated the
relationship between the zone height and the configura-
tion of the isothermal surfaces for a stationary zone.

The check depended upon determination of the con-
figurations of the crystallization and fusion surfaces
which were established by blowing off the melt with a
powerful gas jet and simultaneously switching off the
melting generator. Melting was carried out in air after
first determining that this would have only a slight ef-
fect on the results as compared with vacuum conditions.
The experiments were performed on rods of technical
silicon 0. 03 m in diameter and 0.2 m long. The mol-
ten zone was created in the middle of the rod which
eliminated the distorting influence of heat flow into the
end grips. There was no displacement of the zone
along the rod.

The results obtained are presented in Fig. 2. Ap-
proximately plane fusion surfaces were obtained at the
same zone height as determined theoretically for v =
= 0.

In this connection, however, it is not correct to
speak of total similarity of the temperature fields ob-
tained by calculation and experiment. For example,
in the theory the directional displacement of particles
of liquid silicon observed under actual zone refining
conditions was not taken into account.

In the second series of experimentis we investigated
the effect of the latent heat of fusion, associated with
motion of the zone, and the specific heat on the dis-
placement of the zone relative to the inductor.

By the displacement ! we understand the displace-
ment of the middle of the molten zone on the surface
relative to the position of the inductor.

The experiments were carried out in a vacuum. The
displacement was determined by projecting an enlarged
image of the zone on a screen. The results of the ex-
periments are presented in Fig. 3.

A comparison of theory and experiment also shows that
calculations at Aj /AS = 100 give much better agreement
with experiment.

In conclusion, it may be stated that the experimen-
tal verification of the calculations confirms the possi-
bility of theoretically predicting the shape of the fusion
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isotherms and other gualitative characteristics of the
zone refining process as a function of the process pa-
rameters.

On the basis of a theoretical solution of the zone
refining problem it is possible to solve the problem of
the optimal choice of process parameters (P, v) giving
the best qualitative characteristics (for example,
choice of the power P giving the flattest crystallization
front);

Work of this nature is now being carried out at the
All-Union Scientific Research Institute of High-Fre-
quency Currents in collaboration with the Computer
Center of the Latvian State University and will be the
subject of a subsequent communication.

NOTATION

Here R is the radius of the rod; v is the velocity of
the rod; o is the integral radiation factor; ¢ is the
specific heat; p is the density; Ag and Al are the ther-
mal conductivities of the solid and liquid phases, re-
spectively; T is the temperature; Ty is the melting
(fusion) point of the rod material; Ty is the ambient
temperature; v is the specific latent heat of crystal-
lization; P is the total power of the inductor, a is the
width of the inductor; d is the gap between the induc-
tor and the rod.
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